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TECHNICAL MEMORANDUM 

ON LONG-TERM PERIODICITIES IN THE SUNSPOT RECORD 

I. INTRODUCTION 

c 
In recent years, substantial interest has been given to the sunspot record, 

especially its historical aspects. 
climatic excursions with variations in sunspot number. For example, Eddy [ 1-81 has 
done considerable research on the historical record of sunspot data and solar activity 
(also [9-43, 162-167, 172-1831). H i s  studies, based primarily on naked-eye and early 
telescopic sunspot observations, fossil radiocarbon levels in tree rings, and auroral 
reports, have suggested possibly strong climatic associations in the Sun-Earth record; 
in particular, he has found evidence for the occurrence of prolonged "sunspot 
minima," e.g., the Sporer Minimum (A.D. 1400-1510) and Maunder Minimum (A.D. 
1645-1715), and for the occurrence of a prolonged "sunspot maximum," i.e., the 
so-called Medieval Maximum or Grand Maximum (ca., A.D. 1120-1280). In addition, 
he has given tutorial remarks concerning the sunspot record post-1850 and pre-1850; 
i.e.,  he notes that the highest or best-quality sunspot data are those dated from 
about 1850 to the present, since it was about 1850 when solar observers first began 
to record telescopic sunspot observations in a systematic fashion, having just become 
aware of the existence of the cyclic nature of sunspots (Wilson [44]  and Wilson a. 
E451 1 .  Sunspot observations prior to about 1850 are viewed as being somewhat less 
reliable, or at least somewhat different, as a simple comparison of selected cycle 
parameters for pre-1850 to those post-1850 will show. 
that there may be "bookkeeping" type errors in the compilations associated with these 
early sunspot cycles; also it must not be forgotten that daily sunspot records were 
not maintained on a continuous basis until January 1849, Waldmeier [1701.) Cycles 
have been arbitrarily assigned numbers back in time into the 1700's (and before), 
with sunspot cycle number (SCN) 1 having a maximum in June 1761; the present 
cycle, now in decline, is denoted SCN 21. 

Much of this work sought to associate possible 

.. 

(Sonett 1361 has suggested 

Another aspect of this work has been to estimate or "predict" sunspot numbers 
as a function of time for future epochs, based on modeling or "post-dictingl' of past 
cycles. This aspect usually incorporates various time series techniques which some- 
times make use of power-spectrum analysis results. 
the existence of several possible short-term and long-term periodicities in the solar 
cycles; e.g., several authors have reported the presence of 5-, 8-, lo- ,  22-, 90-, 
and 180-year periods, as well as the well-known ll-year average period cycle dura- 
tion in the sunspot record. Some authors have hypothesized that these periods may 
be due to planetary motion "tidal1' effects, while others argue that sunspot-like cycles 
can be simulated with random noise. It must be pointed out, however, that some 
skepticism remains regarding the authenticity of most of these short-term and long- 
term periodicities, and, following Wallenhorst [62] ,  it is important to note that the 
ll-year periodicity is the only statistically significant one present in the sunspot 
data. 
for a mere 130 years or so; thus, few or no cycles of periods substantially longer 
than 11 years have been observed. Wilson 1441, Wallenhorst 1461, Newkirk and 
Frazier [ 471, Bray and Loughhead [ 481 , Noyes 1491 , and Meadows [ 501 have given 
additional comments regarding sunspot numbers, their history, measurement, and use. 

Power-spectrum analyses suggest 

* 

We should recall that sunspots have been routinely and systematically monitored 



A number of references [51-161, 170-1831 are included which allows the reader to 
follow the past 80 years growth in our understanding of sunspot cyclicity and to see 
the methods employed for estimating contemporary values of sunspot number. 

The purpose of this report is threefold: (1) to compare observed sunspot 
numbers at cycle maximum of contemporary cycles (i.e., cycles 8 through 20) with 
similar computed values, based on the assumption that sunspots are periodic in nature 
(i, e. , sinusoidal) ; ( 2) to extrapolate the preferred, empirical periodic function "back- 
wards" in time to qualitatively compare computed values with values estimated by 
others for such epochs as the Maunder Minimum; and (3) to extrapolate the preferred 
periodic function '?forwards" in time to estimate smoothed sunspot number at sunspot 
maximum (denoted, RMAx) for cycles 21, 22, and beyond. In addition, using linear 
relationships identified in Wilson [ 443 , a number of cycle-related parametric values 
will be estimated and compared with observed values (when they are known) for cycle 
2 1  and will be projected for cycle 22. In Section 11, the approach used in this study 
is described; in Section 111, the results and discussion of the findings are presented; 
and in Section IV, the conclusions are stated. 
studies investigating solar activity and its estimate (e.g., Wilson [ 44,  1021 
- et [45, 1001 and Teuber et al. [ 1071). 

This report is a continuation of 
Wilson 

11. APPROACH 

Since Eddy [4 ]  (and before him McNish and Lincoln [123]) has cautioned that 
cycles observed prior to about 1850, corresponding to SCN 9, may not be reliably 
known many solar statisticians today limit their remarks concerning cycle-related 
parameters, - such as ascent period (dubbed - ASC , the time in months measured from 

occurrence to RMAx occurrence ; RMIN is the minimum smoothed sunspot number 
or R13 value marking the beginning of a cycle and RMAx is the maximum R13 value 
in the same cycle), descent period (dubbed DES, the time in months from RMAX 
occurrence to subsequent cycle RMIN occurrence) cycle duration (denoted MIN-MIN 
PERIOD or the cycle minimum-to-minimum period, numerically equal to ASC + DES),  
and others to cycles 8 through 20. 
parameters for cycles 8 through 20. 
deviation for each parameter. 
of selected abbreviations found at the beginning of this report. 

R~~~ 

Table 1 lists values for the cycle-related 
It also gives mean and "uncorrected" standard 

Definitions of these parameters are given in the list 

- 
Using RMAX values for cycles 8 through 20, this report compares a linear- 

regression approach and modifications to it (APPROACH 1) with t w o  cyclic approaches 
and modifications to them (APPROACH 2 and APPROACH 3). 
approaches presume a 50-cycle or approximately 550-year periodicity and a 90-cycle 
or 990-year periodicity in sunspot number, respectively. The reasoning behind the 
selection of these two periods will become evident in the following. 

The two cyclic 

- If restricted to cycles 8 through 20, it is observed that the mean value for 
is 116.2 with a 1-sigma confidence value (or standard deviation, s) of 36.7. R ~ ~ ~ .  

(For small sample size, N ,  when N < 50, the 
J N / ( N  - 1) x s ,  or 38.2.) Thus, any given 
have, assuming a 1-sigma confidence with no 

ffcorrectedff 1-sigma value is equal to 
cycle can "crudely" be predicted to 

apparent trend in the data, an RMAx 

2 



TABLE 1. SELECTED VALUES FOR CYCLES 8 THROUGH 20 
MI N-M IN 

SCN R M A ~  EMIN SMEAN ASCCHM DCHM ASC DES PERIOD SLOPEASC SLOPEDES 

8 146.9 7.3 66.9 43.4 77.1 23 53 40 76 116 3.490 

9 132.0 10.5 55.9 30.4 71.3 44 39 55 94 149 2.209 

10 97.9 3.2 48.2 29.6 50.6 29 57 50 85 135 1.894 

11 140.5 5.2 52.9 43.8 72.9 28 46 41 100 141 3.300 

12 74.6 2.2 33.8 23.8 38.4 22 63 60 74 134 1.207 

13 87.9 5.0 38.5 28.1 46.5 20 54 47 96 143 1.764 

14 64.2 2.7 32.1 22.3 33.5 23 72 49 89 138 1.255 

15 105.4 1.5 44.0 30.5 53.5 27 50 49 71 120 2.120 

16 78.1 5.6 40.3 25.6 41.9 24 59 57 65 122 1.272 

17 119.2 3.5 57.2 36.9 61.4 29 57 43 82 125 2.691 

18 151.8 7.7 74.0 50.5 79.8 27 51 39 83 122 3.695 

19 201.3 3.4 90.5 67.6 102.4 23 54 47 79 126 4.211 

20 110.6 9.6 59.9 34.8 60.1 23 74 49 91 140 2.061 

-1.795 
-1.370 
-1.091 
-1.383 
4 .941  
-0.888 
-0.704 
-1.406 
-1.148 
-1.360 
-1.788 
-2.427 
-1.081 

MEANg-20 116.2 5.2 53.4 35.9 60.7 26.3 56.1 48.2 83.5 131.6 2.398 -1.337 

S8-20 36.7 2.7 16.2 - 18.8 5.8 9.2 6.2 10.0 10.0 0.958 0.441 

value equal to  approximately 116.2 f 36.7. Statistically, correct prediction would be expected 
about 68 percent of the time. A 2-sigma confidence, or & = 116.2 f 73.4, should result in 
being correct about 95 percent of the time. Therefore, it would be extremely useful to  deduce 
a relationship which gives better estimates for & with reduced 1-sigma spreads. In 
APPROACH 1, & values are "detrended" for cycles 8 through 20 by means of standard 
linear-regression t ime series analysis (e.g., Downie and Heath [168] and Longley-Cook [ 1691 ). 

Examination of & values for cycles 8 through 20 clearly shows a downward trend 
between cycles 8 through about 14 and an upward trend from cycle 14  through at least cycle 
19. The entire period spanning cycles 8 through 20 shows an upward trend. Based purely on the  
deduced regression equation, can be "betterT1 predicted since s has been reduced to 33.2. 
Various modifications will be made on this linear-regression fit (denoted LR) to further reduce 
s. These modifications include assuming the presence of an 8-cycle periodicity or an 11-cycle 
periodicity, an 11-cycle periodicity with an imbedded 8-cycle periodicity, and an 11-cycle 
periodicity with an imbedded 2-cycle periodicity. The 8-cycle periodicity was  selected because 
it is equivalent to the so-called rrGleissbergll 90-year period often said to be imbedded in the 
sunspot data [55] . The 11-cycle periodicity is the llbest-fitll periodicity for the given & 
values (cycles 8 through 20). (The term "best-fitrl is used extensively in this report. By this we 
mean that  the fit t o  the observed values of & has the least sum of the squares of the resid- 
uals; see Section III.) The 2-cycle periodicity was selected since throughout much of the period 
spanning cycles 8 through 20, there is an apparent 3.p-down-upr1 signal in the data. 

3 



In APP&OAC€! $, pMA8 v@ws Qtt& fw e y ~ b s  t3 f h ~ f ~ ~ g b  30 u&g a  he . 
curve with a period equal to 50 cycles. 
tion that the Maunder Minimum actually occurred (the middle of the minimum corres- 
ponds to SCN -6) and that the sine curve is at phase 270 deg at that point and at 
phase 90 deg at SCN 19; hence, the half-period of the sine curve is 25-cycles, 
yielding the period to be 50 cycles. 
and yields a line that is very close in value to the linear-regression line. 
tions to this approach are as above in APPROACH 1, using various combinations of 
an ll-cycle , 8-cycle, and/or 2-cycle periodicity imbedded in the 50-cycle fi t .  

This period was chosen based on the assump- 

Such an analysis gives a l-sigma value of 37.0 
Modifica- 

In APPROACH 3, the LR fit is approximated by a sine curve of period equal to 
90 cycles, such that the curve is at phase 90 deg during the Grand Maximum (at 
SCN -53) and at phase 270 deg during the Maunder Minimum (at SCN -8). 
analysis gives a l-sigma value of 36.1 and yields a line very close to that of the 
regression line. Modifications to this approach follow that above for APPROACH 1 
and APPROACH 2 ,  using various combinations of an ll-cycle, 8-cycle, and/or 2-cycle 
periodicity imbedded in the 90-cycle fit.  

Such an 

- 
= 116.2 R~~~ 

Linear-Regression Fit 
- 

= 88.1 + 2.0 X R~~~ 

50-Cycle Fit , 

- 
= 100.7 + 18.7 sin e l ( X )  R~~~ 

90-Cycle Fit 
- 

= 116.0 + 24.7 sin e5(X) R~~~ 

In equation ( 2 ) ,  X is the sunspot cycle number (SCN) . 
e,(X) is the angle in degrees for a particular X assuming a 50-cycle periodicity, and 

In equations (3) and (4 ) ,  

4 
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e ( X )  is the angle in degrees for a particular X assuming a 90-cycle periodicity, 
respectively. The standard devia- 
tions for each of these fits are 36.7, 36.1, 37.0, and 36.1, respectively. Equation 
(3) is of the form y = a. + al sine, where a. = 100.7 and al = 18.7. The constant 
a. was chosen to be 100.7 on the basis that SCN 19  has the highest known RMAX 
value (= 201.3) and that the lowest possible value for any cycle is 0; thus, a. is the 
rounded-off half-way point between these two extremes. 

vlbest-fitlv value based on the given a. and the values of 0,(X) as shown in Table 2 

for cycles 8 through 20. 

values of al and computing RMAX values for cycles 8 through 20 with the given ao, 
summing the squares of the residuals (where a residual is the difference between the 
observed and computed value of RMAx for a cycle), and fitting these sums of squares 
of the residuals versus al which yields the least value for the sums of the squares 
of the residuals. 

5 
These angular values are identified in Table 2. 

The constant ax is the 

The "best-fit" al was deduced by arbitrarily selecting three 

TABLE 2. ANGULAR VALUES (PHASES) FOR SELECTED PERIODIC 
CYCLES AS A FUNCTION OF SCN 

- 

SCN 

-60 
-59 
-58 
-57 
-56 
-55 
-54 
-53 
-52 
-51 
-50 
-49 
-48 
-47 
-46 
-45 
-44 
-43 
-42 
-4 1 
-40 
-39 
-38 
-37 
-36 
-35 
-34 
-33 
-32 
-31 
-30 
-29 
-28 
-27 
-26 
-25 
-24 
-23 
-22 
-2 1 
-20 
-19 
-18 
-17 
-16 

- 

GRAND MAXIMUM 

v (APPROXIMATE) 

W W W L U W  
d - I - 1 d - I  
0 0 0 0 0  

CYCLEMAXIMUM ,d d m APPROXIMATE 
YEAR DATE 

S S S S C  

1088 
1099 
1110 
1121 
1132 
1143 
1154 
1165 
1176 
1187 
1198 
1209 
1220 
1231 
1242 
1253 
1264 
1275 
1286 
1297 
1308 
1319 
1330 
1341 
1352 
1363 
1374 
1385 
1396 
1407 
1418 
1429 
1440 
1451 
1462 
1473 
1484 
1495 
1506 
1517 
1528 
1539 
1550 
1561 
1572 

elx e2x e3x - - -  
241.2 24.5 135 
248.4 57.3 180 
255.6 90.0 225 
262.8 122.7 270 
270.0 155.5 315 
277.2 188.2 360 
284.4 220.9 45 
291.6 253.6 90 
298.8 286.4 135 
306.0 319.1 180 
313.2 351.8 225 
320.4 24.5 270 
327.6 57.3 315 
334.8 90.0 360 
342.0 122.7 45 
349.2 155.5 90 
356.4 188.2 135 

3.6 220.9 180 
10.8 253.6 225 
18.0 286.4 270 
25.2 319.1 315 
32.4 351.8 360 
39.6 24.5 45 
46.8 57.3 90 
54.0 90.0 135 
61.2 122.7 180 
68.4 155.5 225 
75.6 188.2 270 
82.8 220.9 315 
90.0 253.6 360 
97.2 286.4 45 

104.4 319 1 90 
111.6 351.8 135 
118.8 24.5 180 
126.0 57.3 225 
133.2 90.0 270 
140.4 127.7 315 
147.6 155.5 360 
154.8 188.2 45 
162.0 220.9 90 
169.2 253.6 135 
176.4 286.4 180 
183.6 319.1 225 
190.8 351.8 270 
198.0 24.5 315 

e4x - 
270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 
90 

270 

f35x - 
62 
66 
70 
74 
78 
82 
86 
90 
94 
98 

1 02 
106 
110 
114 
118 
122 
126 
130 
134 
138 
142 
146 
150 
154 
158 
162 
166 
170 
174 
178 
182 
186 
190 
194 
198 
202 
206 
210 
214 
218 
222 
226 
230 
234 
238 

NOTES - 

(APPROXIMATE) 

MI N [MUM 

(APPROXIMATE) 
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SCN 

c 

-15 
-14 
-13 
-12 
-1 1 
-10 
- 9  
- 8  
- 7  
- 6  
- 5  
- 4  
- 3  
- 2  
- 1  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

TABLE 2. (Concluded) 

CYCLE MAXIMUM 
APPROXIMATE 
YEAR DATE 

1583 
1594 
1605 
1616 
1627 
1638 
1649 
1660 
1671 
1682 
1693 
1704 

1726 
1737 
1748 
1759 
1770 
1781 
1792 
1803 
1814 
1825 
1836 
1847 
1858 
1869 
1880 
1891 
1902 
1913 
1924 
1935 
1946 
1957 
1968 
1979 
1990 
2001 
2012 
2023 
2034 
2045 
2056 
2067 
2078 

1715 

W 
-1 
0 > 
V 
I 
0 
u) 

01X - 
205.2 
212.4 
219.6 
226.8 
234.0 
241.2 
248.4 
255.6 
262.8 
270.0 
277.2 
284.4 
291.6 
298.8 
306.0 
313.2 
320.4 
327.6 
334.8 
342.0 
349.2 
356.4 

3.6 
10.8 
18.0 
25.2 
32.4 
39.6 
46.8 
54.0 
61.2 
68.4 
75.6 
82.8 
90.0 
97.2 

104.4 
111.6 
118.8 
126.0 
133.2 
140.4 
147.6 
154.8 
162.0 
169.2 

w 
-1 
0 > 
0 

I 
r 
r 

02x - 
57.3 
90.0 

122.7 
155.5 
188.2 
220.9 
253.6 
286.4 
319.1 
351.8 

24.5 
57.3 
90.0 

122.7 
155.5 
188.2 
220.9 
253.6 
286.4 
319.1 
351.8 

24.5 
57.3 
90.0 

122.7 
155.5 
188.2 
220.9 
253.6 
286.4 
319.1 
351.8 
24.5 
57.3 
90.0 

122.7 
155.5 
188.2 
220.9 
253.6 
286.4 
319.1 
351.8 

24.5 
57.3 
90.0 

W 
-1 
V > 
V 
I m 

03x  - 
360 
45 
90 

135 
180 
225 
270 
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Similarly, equation (4)  is of the form y = a. + al sine, where a. = 116 and 
111 al = 24 .7 .  The constant a. was selected to be approximately the value that the 

linear-regression equation [eq. ( 2 ) l  yields for SCN 14, the mid-point of the data set. 
A s  above, al is the ?'best-fit" for the given a. and the values of 0 ( X )  shown in 
Table 2 ,  using the least-squares method. 

5 

In Figure 2 ,  the residuals are plotted in units of standard deviation for .each of 
the fits shown in Figure 1. 
several smaller regions. 
since approximately 50 percent , on average, of the RMAX values are expected to lie 
within its bounds; the region just above (and below) "average" is called "above (below) 

For convenience, the figure is arbitrarily divided into 
The middle region of each - plot is designated "average" 
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Figure 2. Statistical spread versus SCN 
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average and approximately 20 percent, on average, of the cycles are expected to fall 
within its bounds. 
and represents the approximately upper (lower) 5 percent, on average, of the RMAX 
values which are greater than 1.645 standard deviations above (below) the computed 
value for wMAx. 
probably be an anomalously high RMAx cycle. 

to the aforementioned basic curve-fits (linear regression, 5O-cycle, and 90-cycle fits) 
are examined. 
preferred empirical fit with values reported for earlier epochs (SCN 1 through 7 and 
the Maunder Minimum). (The reader is reminded that phase for the empirical fit is 
based, in part, on the occurrence of the Maunder Minimum; however, amplitude for 
the fi t  is based only on cycles 8 through 20.)  In Subsection E ,  the empirical fit is 
used to infer values of RMAX for future epochs (SCN 21, 22,  and beyond). 

The top-most (bottom-most) region is called iimomalous high (10w)ii - 

Based on these single-component fits, SCN 19 is observed to 

In subsections A ,  B , and C which follow , the effects of selected modifications 

In subsection D , computed values of BMAx are compared using the 

A. Linear-Regression Fits (APPROACH 1) 

Following the first modification in APPROACH 1, Figure 3 shows the linear- 
regression fit with an 8-cycle variation. The equation for this fit is: 

- 
= 88.1 + 2.0 X + 19.8 sin 83(X) , R~~~ 
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- 
RMAX VALUES VS. SCN (APPROACH 1) 
COMPARISON OF OBSERVED AND COMPUTED 
VALUES BASED ON 8-CYCLE VARIATION OF 

LINE FIT (LR + 8) 
RMAX = a0 + a1 X + a2 sin 03 (X) 

a0 = 88.1, a1 = 2.0, a2 = 19.8, S= 33.4 

LINEAR-REGRESSION 

- 

e 3  (x): SEE TABLE 
@ OBSERVED VALUE 
A COMPUTED VALUE 

LR + 8 FIT 

I I I 

10 15 20 

SUNSPOT CYCLE NUMBER (SCN) 

+2.0s 

+I .5S 

+I .os 
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0 

-0.55 

-1.0s 

-1.5s 

-2.0s 

(5) 

8 10 12 14 16 18 20 22SCN 
I I I I I 8 1 I 

ANOMALOUS HIGH LR + 8 FIT, S = 33.4 
(<5%) 

I 

I ANOMALOUS LOW 
(<5%) 

Figure 3. LR + 8 FIT. 
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where X is again SCN and e3(X) is found in Table 2.  
"best-fit" for the values given in the table and above. 
the statistical spread (s = 3 3 . 4  for the LR + 8 FIT as compared to s = 36.1 for the 
LR FIT alone) ; so, if indeed there is an 8-cycle periodicity in the RMAx record for 
cycles 8 through 20,  it does not appear to contribute much to the variation in EMAX 
value with time. 
to probably be anomalously high. 

The constant 19.8 is the 
This fit only slightly reduces 

Based on this two-component f i t ,  both cycles 8 and 19  are observed 

-2.0s 

A better two-component fit is plotted in Figure 4 which shows the linear- 
regression fit with an 11-cycle variation. Its equation is: 

- 
ANOMALOUS LOW 
(6%) 

- 
R~~~ = 88.1 + 2.0  X + 30.7  sin e,(x) . (6) 

A s  before, X is SCN and e2(X)  can be found in Table 2 .  
"best-fit" for the given table values and constants used in equation (6) .  This fit 
reduces the statistical spread by about 30 percent (s = 2 5 . 2  for the LR + 11 FIT). 
Based on this f i t ,  cycle 19 is anomalously high and cycle 20 is anomalously low. 

11-cycle and 8-cycle variation. 

The constant 30 .7  is the 

Figure 5 shows a three-component fit based on the linear-regression fit with an 
Its equation is : 

- 
R~~~ = 88.1 + 2 . 0  X + 30 .7  sin e,(X) + 11.4 sin e3(X) . (7 )  

20t 
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a > 
X 

15C 
ia 

1 oc 

5t 

- 
RMAX VALUES VS.SCN (APPRAOCH 1) 

COMPARISON OF OBSERVED AND COMPUTED 
VALUES BASED ON 11-CYCLE VARIATION 
ON LINEAR-REGRESSION LINE FIT (LR + 11) 
RMAX = a0 + alX + a2 sin 82 (X) 
a0 = 88.1, a1 = 2.0. a2 = 30.7, S= 25.2 
82 (X) =SEE TABLE 
a OBSERVED VALUE 
A COMPUTED VALUE 

- 

I I I 

10 15 20 

SUNSPOT CYCLE NUMBER (SCN) 

Figure 4 .  

+2.0s 

+15S 

+l.OS 

+0.55 

0 
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-1.0s 

-1.5s 

8 10 12 14 16 18 20 22 SCN 
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( 50% 1 

LR + 11 FIT. 
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COMPARISON OF OBSERVED AND COMPUTED 

VARIATION ON 

RMAX = a0 + a1 X + a2 sin 82 1X) + a3 sin 83 [X) 

a o =  88 . l .a l  = 2.0, a2= 30.7, a3= 11.4, S= 24.9 

82 (XI, 83 (X) =SEE TABLE 

VALUES BASED ON 11-CYCLE AND 8-CYCLE 

LINEAR-REGRESSION LINE FIT (LR + 11 + 8) 

e OBSERVED VALUE 

A COMPUTEDVALUE 1 200 

I I I I LR 1 + 11 I + 8 FIT, I S = I 24.9 

10 15 20 
5 0 L '  ' I ' I ' I 1 1  I I I I I 

SUNSPOT CYCLE NUMBER (SCN) 

I I ABOVE AVERAGE (-20%) 
+1.5Sr 

-2.0s 

ANOMALOUS LOW (<5%) 

Figure 5. LR + 11 + 8 FIT. 

Again, this equation only slightly reduces the statistical spread as compared to equa- 
tion (6) (s = 24.9 for the LR + 11 + 8 FIT). Based on this f i t ,  cycle 20 is anomal- 
ously low. 

The final fi t  following APPROACH 1 is shown in Figure 6. I t  is a three- 
component fit based on the linear-regression fit with an 11-cycle and 2-cycle varia- 
tion. Its equation is: 

- 
= 88.1 + 2.0 X + 30.7 sin e,(X) + 15.8 sin e4(X) . R~~~ 

This fit reduces the original statistical spread from s = 36.1 to s = 19.7, a 45-percent 
reduction. (The variance has been reduced by 70 percent.) N o  cycles are observed 
to be anomalously low or high based on this fi t ,  although several are in the above 
average or below average categories. 

B .  50-Cycle Fits (APPROACH 2) 

In APPROACH 2,  the baseline fit is a 50-cycle periodicity. Modifications to it 
will be made as in APPROACH 1. 
cycle fit.  Its equation is: 

Figure 7 depicts an 8-cycle variation on the 50- 

- 
= 100.7 + 18.7 sin e,(X) + 2 1  sin e3(X)  . R~~~ 
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The statistical spread about this line is only slightly better than the 50-cycle fit 
alone (s = 33.8 for the 50 + 8 FIT). 
high cycles. 

Cycles 8 and 19 both appear as anomalously 

In Figure 8, an ll-cycle variation on the 50-cycle fit is plotted. As in 
APPROACH 1, a much better fit is suggested. Its equation is: 

- 
R~~~ = 100.7 + 18,7 sin e,(X) + 33.2 sin e,(x) . ( 10) 

Its statistical spread is s = 24.5, about 34 percent more restrictive than the 50-cycle 
fit alone. Cycle 19  is the only cycle that appears to be anomalously high. 
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Figure 8. 50 + 11 FIT. 

In Figure 9, an ll-cycle and an &cycle variation have been placed on the 
50-cycle fit. Its equation is: 

- 
R~~~ = 100.7 + 18.7 sin el(X) + 33.2 sin e2(X) + 8.7 sin e3(X) , (11) 

A s  before, the presence of an 8-cycle periodicity has little effect upon the reduction 
of the statistical spread ( s  = 23.8 for the 50 + 11 + 8 FIT). 
to be anomalously high and low, respectively. 

Cycles 19 and 20 appear 
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Figure 9. 50 + 11 + 8 FIT. 

In Figure 10, an 8-cycle and 2-cycle variation has been included with the 
50-cycle periodicity. Its equation is : 

I 

= 100.7 + 18.7 sin Ol(X) + 21.9 sin 03(X) + 12.8 sin 04(X) . R~~~ 

This fit is worse than the preceding fit, having s = 31.2. 
anomalously high cycle e 

Cycle 8 appears to be an 

A much better fit is that shown in Figure 11 where an 11-cycle and a 2-cycle 
variation has been added to the baseline 50-cycle fi t .  Its equation is: 

R~~~ = 100.7 + 18.7 sin el(X) + 33.2 sin 02(X) + 15.4 sin e,(X) . (13) 

Its statistical spread is 49 percent smaller than that deduced for the baseline (s = 
19.0 for the 50 + 11 + 2 FIT; the variance has been reduced by 74 percent). 
cycle 1 9  appears to be anomalously high. 

Only 

C. 90-Cycle Fits (APPROACH 3) 

In this subsection modifications to a 90-cycle periodicity, which approximates 
the linear-regression equation used in APPROACH 1, are examined. Figure 1 2  shows 
an 8-cycle variation on the 90-cycle fit.  Its equation is: 
14  
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Figure 12.  90 + 8 FIT. 

- 
R~~~ = 116.0 + 24 .7  sin e5(X) + 20.3 sin 03(X) . (14) 

I ts  spread is 33.1, only slightly reduced from the 90-cycle baseline spread of 36.1. 
Cycles 8 and 19 appear to be anomalously high. 

A better fit is obtained using an 11-cycle variation on the 90-cycle periodicity, 
shown in Figure 13. Its equation is: 

- 
R~~~ = 116.0 + 24.7 sin e5(X) + 35.4 sin e2(X)  . (15) 

Its 1-sigma spread is 24.6 units. 
and low, respectively. 

Cycles 1 9  and 20 appear to be anomalously high 

Figure 14 shows an 8-cycle and 2-cycle variation on the 90-cycle periodicity. 
Its equation is 

- 
( 16) = 116.0 + 24.7 sin e5(X) + 20.3 sin e3(X) + 13.2 sin 04(X) . R~~~ 

Its 1-sigma spread is 30.4 and cycle 8 appears to be anomalously high. 
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Figure 15 depicts the function which had the smallest spread for the examples 
tested. It is an 11-cycle and 2-cycle variation on the 90-cycle periodicity. Its 
equation is: 

- 
R~~~ = 116.0 + 24.7 sin e5(X) + 35.4 sin e2(X) + 15.9 sin e4(X) . 

Its 1-sigma spread is 18.8 units, a 48-percent reduction from the baseline spread. 
(The-variance has been reduced by 73 percent.) Cycle 17 appears to be anomalously 
low. 
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D .  Pre-Cycle 8 Fits 
- 

According to the above analysis, values of RMAX for cycles 8 through 20, the 
most reliably known, can be fit very well by equation (17). 
empirical function , one can now extrapolate "backwards" in time to determine eomputed 
smoothed sunspot number at cycle maximum for earlier epochs. 
equation (17) is merely a fit for a small sample, and that this fit may have no "post- 
dictive!' or "pre-dictive" value.) In Figure 16, aMAX is computed backwards in time 
to about A . D .  1080, corresponding to SCN -60. The top-most line is the 90 + 11 + 2 
FIT and the bottom-most line is the 90 + 8 + 2 FIT, drawn for comparison. Observed 
values of R,,, for cycle 1 through 2 1  are drawn as open circles; computed values 

Using this preferred 

(It is realized that 
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are drawn as darkened triangles. The approximate dates, as stated by Eddy [ 3,4] ,  
for the Maunder Minimum, Sporer Minimum, and Grand Maximum are shown. A table 
legend is included which identifies some major milestones in solar research, as related 
to the study of sunspots. Computed mean values and standard deviations are shown 
for the two minima and single maximum periods. A note reminding us that the best- 
quality sunspot data extends from about cycle 8 to the present is also included. One 
quickly observes that, while the 90 + 11 + 2 FIT gives a very good representation of 
cycles 8 through 21,  it gives a very poor match to cycles 2 through 7, sometimes 
departing by more than 3 sigma from computed values. Cycles 2 through 7 appear 
to be better-fitted by the 90 + 8 + 2 FIT. This seems to be supportive of the belief 
that there is an 8-cycle periodicity imbedded in the sunspot record; however, how 
much weight should be given to this view and even to the firmness of the RMAx 
values for cycles 2 through 7 remain unclear. Additional investigation should be 
pursued. 

Table 3 gives values for several selected cycle-related parameters for cycles 1 
through 7. 
through 7 and for the groups cycles 8 through 20 and 1 through 20. Clearly, when 
parametric values are compared for the different groupings, it is found that in some 
cases they are quite dissimilar; e.g., ASC and DES. This may be an indication that 
smoothed sunspot number at cycle maximum for cycles observed prior to cycle 8 are 
in error. (It is known from Waldmeier 11701 that daily records of sunspot number, 
which form the basis for a determination of monthly mean sunspot number which is 
then used to compute smoothed sunspot number, are incomplete.) Rather, it may 
mean that the period encompassing cycles 2 through 7 was an anomalous timespan, 
with values departing from computed values by substantial amounts. 
Sonett [36] has addressed this particularly anomalous era and found the sunspot 
record to be consistent with the idea that, perhaps, there may have been a "book- 
keeping" error in the compilation of sunspot number about 1780 to 1800.) 

Mean values and standard deviations are given for the group cycles 1 

(Very recently, 

TABLE 3. SELECTED PARAMETRIC VALUES FOR CYCLES 1 THROUGH 7 

SCN 
MINIMUM MAXIMUM 

OCCURRENCE DATE OCCURRENCE DATE 

FEB 1755 JUN 1761 
MAY 1766 SEP 1769 
JUN 1775 MAY 1778 
SEP 1784 FEB 1788 
APR 1798 FEB 1805 
JUL 1810 MAY 1816 
APR 1823 NOV 1829 

- 
RMIN WMAX 

8.4 86.5 
11.2 115.8 
7.2 158.5 
9.5 141.2 
3.2 49.2 
0.0 48.7 
0.1 71.7 

ASC 
MIN-MIN 

DES PERIOD 

75 
39 
35 
41 
81 
70 
79 

60 135 
69 108 
76 111 
96 137 
65 146 
83 153 
48 127 

MEAN1-7 5.7 95.9 60.0 71.0 131.0 

s1-7 4.2 40.4 19.1 14.6 15.6 

MEAN8-20 5.2 116.2 48.2 83.5 131.6 

s8-20 2.7 36.7 6.2 10.0 10.0 

MEAN1-20 5.4 109.1 52.3 79.1 131.4 

s 1-20 3.3 39.2 13.6 13.2 12.2 
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Of the three aforementioned, preceding epochs, only the Maunder Minimum can 

value occurs in the 17th century. 
- be examined more closely. 

(17) are higher than has been suggested for this period (e g. , Eddy [ 1,8] ) . 
tion (17) suggests a mean value for xMAx of about 91 k 32.) 
Jiang [35] re-assessed the 17th Century Chinese sunspot records and concluded that 
the inference to a Maunder Minimum may be incorrect (Link [ 231 and Schove [ 241). 
They found sightings which allowed them to argue that solar cycles were continuing 
during the Maunder Minimum and that the average annual sunspot number at cycle 
maximum during this period was around 50 or less. 
based on Korean auroral records for the period A.D. 1507-1747, reports that solar 
activity during the Maunder Minimum may not have been as low as Eddy has claimed. 
Also, Hameed and Wyant [ 381 have found an approximate 23-year cycle in surface 
temperatures in central England during and after the Maunder Minimum, suggesting 
that if variation in climate may be partly due to solar activity, then solar activity 
may still have been very much apparent even during the Maunder Minimum. Figure 
16 gives RMAx values which can be converted to annual numbers for direct compari- 
son. Figure 17 plots annual sunspot number at cycle maximum, R ( A ) ,  versus xMAx, 

According to equation (17) , as Figure 16 shows, a minimum 
However, the values postdicted by equation 

(Equa- 
R~~~ 

Recently, Xu and 

Very recently, Zhang [ 371 , 

a 
P 
n 
W 
m 
3 z 

100 200 
- 
RMAX, SMOOTHED SUNSPOT NUMBER AT CYCLE MAXIMUM 

Figure 17. R(A) versus RMAX. 
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based on cycles 8 through 20. 
standard error of estimate S equal to about 3.8. The equation relating the two 

The Pearson correlation coefficient r is 1.00 with a 

parameters is : YX 

R(A)  = -1.063 + 0.952 EMAX 

Based on equation (18) and the 90 + 11 + 2 FIT, R(A)  values are expected to have 
been about 86 k 31 during the Maunder Minimum. If the Maunder Minimum is viewed 
as an anomalous timespan where R(A) values are depressed about 1 or more standard 
deviations below normal, then R(A)  is expected to often be below 55, very near 
values reported by Xu and Jiang. 

In Table 4, the Xu and Jiang results are recast along with those reported by 
Schove [22] and R(A) estimates based on the 90 + 11 + 2 and 50 + 11 + 2 FITS. 
The table spans SCN -14 to SCN -3, where the Maunder Minimum approximately spans 
SCN - 9  to SCN -3. 
-14 to SCN -5) for which Xu and Jiang give results are very compatible with those 
obtained using either the 90 + 11 + 2 or 50 + 11 + 2 FITS. 
is allowed to be greater than 1-sigma, then, essentially all the records overlap. 
This comparison suggests that while a Maunder Minimum very-well may have occurred, 
solar periodicities were probably still working and values of RMAX given by the 

empirical function (depressed by at least l-sigma, possibly more) may be representa- 
tive of the period. (Recently, Eddy [8] has re-appraised the Maunder Minimum and 
argues that the basis for the occurrence of such a minimum remains f i r m ,  with peak 
annual sunspot number being of the order of 20 or below during this protracted 
period of low sunspot number. ) 

Six of the ten records (Xu and Jiang only give results for SCN 

If the statistical spread 

TABLE 4. COMPARISON OF REPORTED AND COMPUTED FMAx VALUES 
FOR THE MAUNDER MINIMUM 

-14 ' 50 
-13 >160 

-12 a5 

-1 1 160 

-10 50 
- 9  50 

- 8  45 

- 7  <45 

- 6  45 

- 5  <45 

- 4  

- 3  

x 

80 

90 

100 

70 

40 

(50 
60 

50 

30 
50 

130 

106 

129 

85 

97 

48 

68 

38 

79 

66 

116 

100 

135 

102 

125 

80 

91 

44 

63 

33 

71 
58 MAUNDER 

T 
I MINIMUM 

105 

89 

125 - -  

*'No value given in Xu and Jiang C351 
'According to Xu and Jiang C351, based on naked-eye Chinese 

2According to Schove C221 
3Based on 90 + 11 + 2 FIT 
4Based on 50 + 11 + 2 FIT 

sunspot records 
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E. Cycles Beyond SCN 20 

This report will now extrapolate the empirical function "forwards" in time, at 
least for cycles 21 and 22, the two cycles of more immediate concern. 
2 FIT predicts that cycle 21  has a l-sigma confidence a,,, value equal to 1 5 7 . 3  2 

1 8 . 8 .  
and is very close to that which has now been observed (= 164 .5 ) .  
estimates for WMAx for cycle 21  based on all the approaches given earlier; it also 
gives residuals. 
value, in the average range of Figure 15. 
projected for cycle 21,  based on the 90 + 11 + 2 FIT and on the actually observed 
RMAX value. 
tions using RMAX as the independent variable, given in Figures 18 through 20, 

The 90 + 11 + 

This value is remarkably consistent with that predicted by Sargent [64] (= 154) 
Table 5 lists 

It was seen that cycle 21 was about 0 . 3 8  s unit above the predicted 
Table 6 lists the cycle-related parameters 

- 
(Values for the cycle-related parameters are based on regression equa- - 

included in the Appendix.) 

RMIN(SCN + 1) occurrence which marks the beginning of the next cycle (SCN 22) .  

Also given in Table 6 are the occurrence dates for - 
(ascent and descent side), and cycle end date, denoted here as - 'MAX' RCHM 

TABLE 5.  EMAX (COMP) VALUES FOR SCN 21 

METHOD KMAX(COMP) t i SIGMA RES = BMAXCOBS) - R M A X ( c 0 ~ ~ )  

MEAN 116.2 f 36.7 48.3 

LR 130.1 t 36.1 
L R + 8  130.1 f 33.4 
LR + 11 142.8 t 25.2 
LR t 11 t 8 142.8 t 24.9 
LR + 11 t 2 158.6 f 19.7 

50 118.8 t 37.0 
50+ 8 118.8 ?; 33.8 
50+ 11 132.6 ? 24.5 
50+ 11 + 8  132.6 ?; 23.8 
50+ 8 + 2  131.6 t 31.2 
50+11+2 148.0 ?; 19.0 

90 126.8 t 36.1 
9Ot 8 126.8 t 33.1 
got11  141.5 t 24.6 
9 0 t  8 t 2  140.0 t 30.4 
90+11+2  157.3 t 18.8 

34.4 
34.4 
21.7 
21.7 
5.9 

45.7 
45.7 
31.9 
31.9 
32.9 
16.5 

37.7 
37.7 
23.0 
24.5 
7.2 

Table 6 reveals that, based on the 90 + 11 + 2 FIT EMAX projection (= 157.3)  , 
cycle 21 maximum would have been estimated to have occurred about February 1980 
and zcHM occurrence dates about October 1978 and January 1983; cycle end date 
would be expected to occur about March 1987. 
it is noted that RMAX occurrence would have been missed by only 2 months (December 
1979),  and RCHM ascent-side and descent-side occurrences by 4 months and 2 months, 
respectively (June 1978 and March 1983).  Cycle 21 is still in decline, so a com- 
parison between computed and observed cycle end dates is not yet possible. 
[ 441 and Wilson et al. [ 45,1001 have discussed the expected cycle duration for 
cycle 21. 

Based on actual dates of occurrence, 

Wilson 

If cycle 21  is a short-period cycle (cycle duration less than 128 months), 
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TABLE 6. SELECTED PARAMETRIC VALUES FOR SCN 21  

MEAN STANDARD OBS COMP. COMP. 
PARAMETER  VALUE^  DEVIATION^ VALUE  VALUE^ VALUE3 

RMAX 116.2 36.7 164.5 157.3 
- 

RMIN 5.2 2.7 12.2 6.1 6.2 

EMEAN 53.4 16.2 70.7 73.7 

'MEAN 35.9 12.2 

RCHM 60.7 18.8 

ASCCHM 26.3 5.8 

DCHM 56.1 9.2 

ASC 48.2 6.2 

88.4 

24 

42 

48.3 50.4 

81.7 85.4 

27.6 27.8 

50.9 50.0 

44.3 43.6 

DES 83.5 10.0 84.5 84.7 

MIN-MIN 
PERIOD 131.6 10.0 128.8 128.3 

SLOPEAsC 2.398 0.958 3.626 3.426 3.606 

SLOPEDES -1.337 0.441 -1.767 -1.851 
- 

OBS. COMP.2 COMP3 
- 
RMAX OCCURRENCE DATE: DEC 1979 FEB 1980 

RCHM OCCURRENCE DATES: ASC-SIDE JUN 1978 OCT 1978 OCT 1978 
DES-SIDE MAR 1983 JAN 1983 DEC 1982 

MAR 1987 FEB 1987 

- 

RMlN (SCN + 1) OCCURRENCE DATE: 

'BASED ON CYCLES 8 THROUGH 20 

*BASED ON 90 + 11 + 2 FIT; RMAX(COMP) = 157.3 

3BASED ON EMAx(OBS) = 164.5 

then cycle 2 1  should end before March 1987 (best-guess date: 
wise, cycle 2 1  will  be a long-period cycle (cycle duration greater than 133 months) 
ending no earlier than August 1987 (best-guess date: 

August 1986); other- 

February 1988). 

In Table 7 ,  computed xMAx values with 1-sigma confidence for cycle 22 are 

listed. 
to be 107.4. (Sargent and Heckman [ 661 and Sargent [ 1711 have discussed current 
efforts to predict cycle 22; also, a Solar Terrestrial Prediction Workshop with the 
expressed objective of discussing current efforts to predict cycle 22 occurred 18-22 
June 1984 in Meudon, France.) Using this value, Table 8 projects values for the 
cycle-related parameters for cycle 22. 

Extrapolation of the 90 + 11 + 2 FIT yields an estimate of BMAX for cycle 22 

The RMAx occurrence date is projected to be 
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- 
TABLE 7 .  RMAX (COMP) VALUES FOR SCN 22 

LR + 11 + 2 FIT 111.9 f 19.7 

50+ 11 +2 FIT 98.0 f 19.0 

90+ 11 + 2  FIT 107.4 f 18.8 

90+ 8 + 2 F I T  100.8 f 24.5 

TABLE 8. SELECTED PARAMETRIC VALUES FOR SCN 22 

PARAMETER MEAN  VALUE^ STANDARD  DEVIATION^ COMPUTED  VALUE^ 

- 
RMAX 

RMIN 

RMEAN 

S~ EAN 

RCHM 

ASCCHM 

DCHM 

- 

ASC 

DES 

M IN-M IN 
PERIOD 

116.2 

5.2 

53.4 

35.9 

60.7 

26.3 

56.1 

48.2 

83.5 

131.6 

2.398 

-1.337 

36.7 

2.7 

16.2 

12.2 

18.8 

5.8 

9.2 

6.2 

10.0 

10.0 

0.958 

0.441 

107.4 

5.0 

49.7 

33.3 

56.2 

26.0 

57.2 

49.0 

83.2 

132.2 

2.178 

-1.245 

- 
R M ~ N  OCCURRENCE DATE: 

COMP. 
MAR 1987 

- 
RMAX OCCURRENCE DATE: APR 1991 

RCHM OCCURRENCE DATES: ASC-SIDE MAY 1989 
- 

DES-SIDE FEB 1994 
- 
RMIN(SCN + 1) OCCURRENCE DATE: MAR 1998 

~~ ~~ 

'BASED ON CYCLES 8 THROUGH 20 

 BASED ON 90 + 1 1  + 2 FIT; RMAX(COMP) = 107.4 

25 



April 1991, RCHM occurrence dates May 1989 and February 1994, and the cycle-end 
date March 1998, all dates based on the March 1987 projected end date for cycle 21. 
Other dates, based on bifurcation of sunspot cycles into short-period and long-period 
cycles, have been summarized elsewhere (Wilson a. [ 45,1001 ) . In contrast to 
cycle 2 1  which is the second highest documented BMAx cycle, cycle 22 is projected 
to be a low-valued EMAX cycle, very probably of long cycle duration. 
are projected to be decreasing in w,,, value through at least cycle 24 and then to 

be insreasing in zMAx value thereafter, at least through cycle 30 (Fig. 16). 
next "Grand Maximum" like period is projected to be around SCN 40, corresponding 
to ca. A.D. 2180. 

Future cycles 

The 

IV. CONCLUSIONS 

This study has shown that values of RMAx for modern sunspot cycles (i.e., 

cycles 8 through 21) can be satisfactorily fitted using a three-component sine curve 
representation 
mately 90-cycle periodicity (in terms of sunspot cycle number). The 90 + 11 + 2 FIT 
yields "minima," non-zero, low-value RMAX periods, such as the Maunder and Sporer 
Minima, and a "maximum , I t  high-value RMAX period, such as the Grand Maximum, as 
reported by Eddy [3,41,  although the values of RMAx projected for the protracted 

sunspot minimum periods are considerably higher than has been estimated by other 
investigators [ 8,351. Annual sunspot numbers, as reported by X u  and Jiang [ 351, 
for the Maunder Minimum are found to be very close to values "post-dicted7' by the 
90 + 11 + 2 FIT,  especially if we consider the Maunder Minimum (and other such 
minima) to be a brief period when sunspot number is about 1-sigma below flnormalrl 
(i.e., below computed values) 
has been used to give estimates of RMAx for cycles 2 1  and 22, and a number of 
useful linear relationships based on RMAX [44] has been applied to project the 
behavior of these cycles. 
limited number of known cycle-related parameters for cycle 21 yields very good 
- agreement. 

having an 11-cycle and a 2-cycle variation imbedded in an approxi- 

- 

The 90 $. 11 + 2 FIT , extrapolated forward in time, 

A comparison of observed and predicted values for the 

Cycle 22 is predicted to be a low-valued RMAX /long-period cycle, with 
equal to about 107. R~~~ 
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Figure 18. SLOPEASC, R,,,, RMEAN and RMIN versus RMAX. 
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MIN-MIN PERIOD = 
139.520-0.068 EMAX 

r = -0.25, Syx = 10.47 
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- 
Figure 19. MIN-MIN PERIOD, DCHM and A X C H M  versus RMAX. 
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Figure 20. DES and ASC versus EMAX. 
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